ntop Users Group Meeting

PF_RING Tutorial

Alfredo Cardigliano <cardigliano@ntop.org>



mailto:cardigliano@ntop.org

Overview

Introduction

Installation

Configuration

Tuning

Use cases

ntop

\ meeting

Arnhem, Netherlands + October 17, 2016



PF_RING

* Open source packet processing framework for Linux.

* Originally (2003) designed to accelerate packet
capture on commodity hardware, using patched
drivers and in-kernel filtering.

* Today it supports almost all Intel adapters with kernel-

bypass zero-copy drivers and almost all FPGAs
capture adapters.

Arnhem, Netherlands + October 17, 2016

)
meeting



PF RING’s Main Features

« PF_RING consists of:

« Kernel module (pf_ring.ko)

« Userspace library (libpfring) PCAP App

implementing multi-vendor

Support libpfring modules
Userspace

applications

NIC

iniop
meeting
Arnhem, Netherlands + October 17, 2016 .



Standard Drivers

* Standard kernel drivers, NAPI polling.
* 1-copy by the NIC into kernel buffers (DMA).

* 1-copy by the PF_RING kernel module into memory-map’ed memory.

ntop

\ meeting

Arnhem, Netherlands + October 17, 2016



PF RING ZC Drivers

* Userspace drivers for Intel cards, kernel is bypassed.
* 1-copy by the NIC into userspace memory (DMA).

» Packets are read directly by the application in zero-copy.

App

zc:ethl

Userspace

iniop
i meeting
Arnhem, Netherlands + October 17, 2016 .

Kernel




 PF_RING ZC is not just a zero-copy driver, it provides
a flexible API for creating full zero-copy processing
patterns using 3 simple building blocks:

3 » Queue

» Hw Device Queue

» Sw SPSC Queue
@ » Pool: DMA buffers resource.
J »~ » Worker: execution unit able to aggregate traffic
@:{ from M ingress queues and distribute it to N
j b generic egress gqueues using custom functions.

Arnhem, Netherlands + October 17, 2016

PF_RING ZC API

)
meeting



PF_RING ZC API - zbalance Example

Pool Pool Pool

Consumer: Consumer: Consumer:
I hread:0 Thread | Thread 2

PF_RING PF_RING PF_RING
ZC ZC ZC

Corel Core2 Core3

{ nfop

meeting

Arnhem, Netherlands + October 17, 2016



PF_RING ZC API - zbalance code

* Code for aggregation and load-balancing using ZC:

I zc = pfring zc_create_cluster (ID, MTU, MAX BUFFERS, NULL);
for (1 = 0; 1 < num devices; i++)
inzqli] = pfring zc_open_device (zc, devices[i], rx only);
for (1 = 0; 1 < num _slaves; 1++)

outzg[i] = pfring zc_create_ queue (zc, QUEUE LEN) ;

o U1 bW N

zw = pfring zc_run balancer(inzg, outzqg, num devices,

num_ slaves, NULL, NULL, !wait for packet, core id);

{ nfop

meeting

Arnhem, Netherlands + October 17, 2016



FPGAs Support

« Currently PF_RING natively supports the following vendors (1/10/40/100 Gbit)

Accolade

Technology

Mellanox

TECHNOLOGIES

BEXABLAZE —= INVeATECH

MyY=icoMm napatech™

Products by CSm™i

« PF_RING-based applications transparently select the module by means of the interface name.

Example:
* pfcount
* pfcount
* pfcount
* pfcount

* pfcount

-i

ethl
zc:ethl
nt:1
myri:1

exanic:0

[Vanilla Linux adapter]
[Intel ZC drivers]
[Napatech]

[Myricom]

[Exablaze]

Arnhem, Netherlands + October 17, 2016

ntop

¢ meeting



Many modules, single API.

App App App App

zc:ethl ; myri:0 stack:eth?  timeline:/storage

libpfring

pf_ring mod Napatech mod Myricom mod Stack mod n2disk mod

Napatech lib SNF lib .
PCAP h
ring buffer

(packet copy) Net rork
St ck

Kernel

pf_ring.ko

Star lard
Dri ers

0-copy (DMA)

yA® Napatech Myricom

JeupuaiNs Intel NIC . e

‘\ meeting '

Arnhem, Netherlands + October 17, 2016



Overview

Introduction

Installation

Configuration

Tuning

Use cases

ntop

\ meeting

Arnhem, Netherlands + October 17, 2016



Installation

* Two options for installing PF_RING:

» Source Code (GitHub) O

* Packages Q

» Stable

» Dev (aka “nightly builds”)

{ntop
i meeting
Arnhem, Netherlands + October 17, 2016 .



Installation - Source Code

¢ Download

# git clone https://github.com/ntop/PF RING.git
* Installation:

# cd PF_RING/kernel

# make && make install

# cd ../userland

# make && make install

» ZC drivers installation (optional):
# cd PF_RING/drivers/intel/<model>/<model>-<version>-zc/src

# make && make install

» Support for FPGAs (Napatech, Myricom, etc) is automatically enabled if drivers are installed.

ntop

{ meeting

Arnhem, Netherlands + October 17, 2016



Installation - Packages

» CentOS/Debian/Ubuntu stable/devel repositories at http://packages.ntop.org

« Installation:
# wget http://apt.ntop.org/16.04/all/apt-ntop.deb
# dpkg -1 apt-ntop.deb
# apt-get clean all
# apt-get update
# apt-get install pfring
» ZC drivers installation (optional):
# apt-get install pfring-drivers-zc-dkms

» Support for FPGAs (Napatech, Myricom, etc) is already there.

Arnhem, Netherlands + October 17, 2016

ntop

¢ meeting


http://packages.ntop.org

Overview

Introduction

Installation

Configuration

Optimisation

Use cases

ntop

\ meeting

Arnhem, Netherlands + October 17, 2016



Loading PF_RING

* |f you compiled from source code:
# cd PF_RING/kernel
# insmod ./pf ring.ko
* |f you are using packages:
# tree /etc/pf ring/
|-- pf ring.conf
"-- pf ring.start

# /etc/init.d/pf ring start

ntop

\ meeting

Arnhem, Netherlands + October 17, 2016



Loading ZC Drivers

 /C drivers are available for almost all Intel cards
based on e1000g, igb, ixgbe, i40e, fm10k

* /C needs hugepages for memory allocation, the
pf_ring init script takes care of reserving them.

* A ZC interface acts as a standard interface (e.g. you

can set an IP on ethX) until you open it using the “zc:”
prefix (e.g. zc:ethX).

Arnhem, Netherlands + October 17, 2016

)
meeting



Loading ZC Drivers

« |f you compiled from source code:

# cd PF _RING/drivers/intel/<model>/<model>-<version>-zc/src

# ./load driver.sh

* |In essence the script loads hugepages and dependencies and load the module with:
# insmod <model>.ko RSS=1,1 [other options]

« You can check that the ZC driver is actually running with:

# cat /proc/net/pf ring/dev/ethl/info | grep ZC

Polling Mode: ZC/NAPI

ntop

¢ meeting

Arnhem, Netherlands + October 17, 2016



Loading ZC Drivers

* If you are using packages (ixgbe driver in this example):
# tree /etc/pf_ring/

| -- hugepages.conf

|-- pf_ring.conf

|-- pf_ring.start

T-- zc
"—- ixgbe
| -- ixgbe.conf
‘-- ixgbe.start
* Where:

# cat /etc/pf ring/hugepages.conf
node=0 hugepagenumber=1024

# cat /etc/pf ring/zc/ixgbe/ixgbe.conf

Rss=1,1

Arnhem, Netherlands + October 17, 2016

ntop

meeting



RSS

» RSS distributes the load across the specified number of RX queues
based on an hash function which is IP-based (or IP/Port-based in case of
TCP)

CPU
Core0 Corel Core2 Core3

=n
Network Card

Arnhem, Netherlands + October 17, 2016

{ ntop

meeting



RSS

* Set the number of RSS queues using the insmod option or ethtool:

# ethtool --set-channels ethl combined 4

# cat /proc/net/pf ring/dev/ethl/info | grep Queues
TX Queues: 4

RX Queues: 4

* In order to open a specific interface queue, you have to specify the
queue ID using the "@<ID>" suffix.

# tcpdump -i zc:ethl@O
Note: when using ZC, “zc:eth1” is the same as “zc:eth1@0”! This happens

because ZC is a kernel-bypass technology, there is no abstraction
(queues aggregation) provided by the kernel.

Arnhem, Netherlands + October 17, 2016

{ nfop

meeting



Indirection Table

* Destination queue is selected in combination with an
indirection table:

queue = indirection table[rss hash (packet) ]

* |tis possible to configure the indirection table using
ethtool by simply applying weights to each RX queue.

{ntop
meeting
Arnhem, Netherlands + October 17, 2016 .



Indirection Table

# ethtool --set-channels ethl combined 4
# ethtool -x ethl
RX flow hash indirection table for ethl with 4 RX ring(s): destlna'non
0: 1 0 1 2 3
8: queue ID
16:
24:
32:
40:
48:
56:
64 :
72
80:
88:
96:
104:
112:
120:

4

hash

OO OO0 OO0 OO OO OO OO OO
I = T = T S R e = T e T = T = B =
DO RN DD NN NN NN
W W WwWwwwwwwowwwwwww
OO OO0 OO0 OO0 OO ©O OO O
= = N R R R S T e e e e
DN NN DD DN NN N
WwWwwWwwwwwwwwwww w

ntop

{ meeting

Arnhem, Netherlands + October 17, 2016



Indirection Table

# ethtool -X ethl weight 1 0 0 O
# ethtool -x ethl
RX flow hash indirection table for ethl with 4 RX ring(s): destlna'non
0: 0 0 0 0 0
8: queue ID
16:
24:
32:
40:
48:
56:
64 :
72
80:
88:
96:
104:
112:
120:

4

hash

O O O O OO OO OO oo oo oo
O O O O OO OO OO oo oo o
O O O O O O OO OO oo oo oo
O O O O OO OO OO oo oo oo
O O O O OO OO OO oo oo o
O O O O OO OO OO oo oo o
O O O O O O OO O o oo oo o
O O O O OO OO oo oo oo o

ntop

{ meeting

Arnhem, Netherlands + October 17, 2016



Overview

Introduction

Installation

Configuration

Tuning

Use cases

ntop

\ meeting

Arnhem, Netherlands + October 17, 2016



- Socket 0

Xeon Architecture

13]|04jU02

Aowapy

CPUO

1/0 controller

- Socket 1

- QPI -

1/O controller

Arnhem, Netherlands + October 17, 2016

PCle

( ntop*

meeting




* QPI (Quick Path Interconnect) is the bus that interconnects the

nodes of a NUMA system.

* QPIis used for moving data between nodes when accessing remote
memory or PCle devices. It also carries cache coherency traffic.

- Socket 0

CPUO

13]|05JU0D

- Socket 1

Arnhem, Netherlands + October 17, 2016

{ ntop

meeting



Memory

e Each CPU has its local memory directly attached.

« Accessing remote memory is slow as data flows through
the QPI, which has lower bandwidth and adds latency.

- Socket 0 : - Socket 1

QP 28

138|009
Aoway

E5-2687WV4

9.6 GT/s QPI

76.8 GB/s RAM DDR4 2400

QPI latency: hundreds of nanosec

Example:
8.0 GT/s QPI - bandwidth 32 GiB/s ~32 GB/s

............................................

Arnhem, Netherlands + October 17, 2016



 Fach node has its dedicated PCle lanes.

* Plug the Network Card (and the RAID Controller) to
the right slot reading the motherboard manual.

- Socket 0

..................

CPUO
S = i
gg
g2 |

1/0 controller

- QPI

- Socket 1

=

1/0 controller

Arnhem, Netherlands + October 17, 2016

e e

)
meeting



Memory Channels

* Multi-channel memory increases data transfer rate between memory and
memory controller. You can use n2membenchmark as benchmark tool.

* Check how many channels your CPU supports and use at least as many
memory modules as the number of channels (check dmidecode).

- Socket 0 : - Socket 1
: CPUO : :
o .
S ¥ , - QP -
g é LOres : :
@ < : : :
1/0 controller

{ ntop"
meeting

Arnhem, Netherlands + October 17, 2016



CPU Cores

* CPU pinning of a process/thread to a core is important to isolate
processing and improve performance.

* In most cases dedicating a physical core (pay attention to hyper-
threading) to each thread is the best choice for optimal performance.

- Socket 0
: CPUO

~19][0AU0D

1/0 controller

- Socket 1

- QPI

Arnhem, Netherlands + October 17, 2016



Core Affinity

* All our applications natively support CPU pinning, e.g.:
# nprobe -h | grep affinity

[-—cpu-affinity|-4] <CPU/Core Id> | Binds
this process to the specified CPU/Core

* When not supported, you can use external tools:

# taskset -c 1 tcpdump -i ethl

Arnhem, Netherlands + October 17, 2016

)
meeting



NUMA Affinity

You can check your NUMA-related hw configuration with:
+ lstopo

e numactl —--hardware

Configuring CPU pinning, usually the application allocates memory
to the correct NUMA node, if this is not the case you can use
external tools:

numactl --membind=0 --cpunodebind=0 tcpdump -i zc:ethl

You can check your QPI bandwidth with:

numactl --membind=0 --cpunodebind=1 nZmembenchmark

Arnhem, Netherlands + October 17, 2016

{ nfop

meeting



PF_RING ZC Driver NUMA Affinity

 PF_RING ZC drivers allocate data structures (RX/TX
ring) in memory, setting NUMA affinity is important.
You can do that at insmod:

# insmod <model>.ko RSS=1,1,1,1 numa cpu affinity=0,0,8,8

* Orif you are using packages:

# cat /etc/pf ring/zc/ixgbe/ixgbe.conf

RSS=1,1,1,1 numa cpu affinity=0,0,8,38

Arnhem, Netherlands + October 17, 2016

{ nfop

meeting



Traffic Recording - Wrong Configuration

- Socket 0 § - Socket 1

bessing in n
—

b rmory to:Storage |\

1/ controller : 110 oontrole1
PCle : : PCle
: T . —

( ntop’

meeting

Arnhem, Netherlands + October 17, 2016



Traffic Recording - Correct Configuration

- Socket 0 : - Socket 1

1/O controller
PCle

PCIE | | PCI-E

meeting
Arnhem, Netherlands + October 17, 2016



Overview

Introduction

Installation

Configuration

Tuning

Use cases

ntop

\ meeting

Arnhem, Netherlands + October 17, 2016



RSS Load Balancing

Linux

Consumer Consumer: Consumer: Consumer
Thread 0 Thread | Thread 2 Thread 3

PF_RING PF_RING PF_RING PF_RING
ZC ZC ZC

Co 20 Cce?2 Coe3

Network Card

{ nfop

meeting

Arnhem, Netherlands + October 17, 2016



RSS: When it can be used

» Flow-based traffic analysis (multi-threaded or multi-process)
and all the applications where Divide and Conquer strategy
is applicable.

* Examples:

* nProbe (Netflow probe)
» nProbe Cento

e Suricata

* Bro

{ntop
meeting
Arnhem, Netherlands + October 17, 2016 .



RSS: nProbe Example

A

nProbe instances example with 4 RSS queues:

nprobe
nprobe
nprobe

nprobe

-i zc:
-i zc:
-i zc:

-i zc:

ethl@0 --cpu-affinity O
ethl@l --cpu-affinity 1
ethl@2 --cpu-affinity 2
ethl@3 --cpu-affinity 3

Arnhem, Netherlands + October 17, 2016

[other
[other
[other
[other

options]
options]
options]

options]

ntop

\ meeting



RSS: Bro Example

* Bro node.cfg example with 8 RSS queues:

# [worker-1]

type=worker

host=10.0.0.1

interface=zc:ethl 4:! This is expanded into zc:eth1@0 .. zc:eth1@7
1b method=pf ring

1b procs=8

pin cpus=0,1,2,3,4,5,6,7

ntop

\rneeﬁng

Arnhem, Netherlands + October 17, 2016



RSS: When it can NOT be used

* Applications where packets order has to be preserved
(also across flows), especially if there is no hw
timestamping.

* For example in n2disk (traffic recording) we have to
keep the original order for packets dumped on disk.

Arnhem, Netherlands + October 17, 2016

)
meeting



ZC Load Balancing (zbalance_ipc)

Consumer Consumer Consumer
APP A App BTO App BT2

PF_RING PF_RING PF_RING
yA® yA® yA®

Corel Core?2 Core3

{ntop
meeting
Arnhem, Netherlands + October 17, 2016 .




ZC Load Balancing: When it is useful

* When RSS is not available or not flexible enough (with
/C you can build your distribution function/hash)

* When you need to send the same traffic to multiple
applications (fan-out) while using zero-copy

* When you need to aggregate from multiple ports and

then distribute
{ ntop"
meeting
Arnhem, Netherlands + October 17, 2016 .



ZC Load Balancing - example

e zbalance_ipc is an example of multi-process load
balancing application:

# zbalance ipc |-1 zc:ethl,zc:ech"—c 99"—n l,2"—m Il-g O

Ingress Interfaces  ZC ID Egress Hash CPU
Queues Type Core

e Consumer applications example:
# taskset -c 1 tcpdump -1 zc:99@0

# nprobe -i zc:99@1 --cpu-affinity 2 [other options]
# nprobe -i zc:99@2 --cpu-affinity 3 [other options]

Arnhem, Netherlands + October 17, 2016

{ nfop

meeting



ZC Load Balancing and Bro

* Bro node.cfg example with 8 ZC queues:

# [worker-1]

type=worker

host=10.0.0.1

interface=zc:99 <& Thisis expanded into zc:99@0 .. 2¢:99@7
1b method=pf ring

1b procs=8

pin cpus=0,1,2,3,4,5,6,7

ntop

\rneeﬁng

Arnhem, Netherlands + October 17, 2016



Other processing patterns

* Using the ZC API you can create any multithreaded or
multi-process processing pattern. Pipeline example:

Linux

Packet App A App B Packet
Dispatcher (e.g. DDos) (e2.1PS) Forwarder

PF_RING PF_RING PF_RING PF_RING
yA® yAe ZC yA®

CoeO Corel Core2 Coe3

{ ntop
meeting
Arnhem, Netherlands + October 17, 2016 .




ZC & Virtualisation: PCI Passthrough

* Any hypervisor is supported: KVM, VMWare (Direct |/
O), Xen, etc.

App

PF_RING zC

@
NIC

Host
{ntop
{ meeting
Arnhem, Netherlands + October 17, 2016 e




ZC & Virtualisation: Host to VM (KVM)

(Host) $ zpipeline ipc -i zc:eth2,0 -o zc:eth3,1 -n 2 -c
99 -r 0 -t 2 -Q /tmp/gmp0

(VM) $ zbounce ipc -c 99 -1 0 -o 1 -u

App
(e.g. IPS)
Packet Packet

Forwarder PE_RING Forwarder:

yA®
PF_RING PF_RING

yA® IV yA®

Corel 8 Coe?

ntop

\ meeting

Arnhem, Netherlands + October 17, 2016



Stack Injection

* /C is a Kernel-Bypass technology: what if we want to
forward some traffic to the Linux Stack”

Userspace

Kernel

ntop

\ meeting

Arnhem, Netherlands + October 17, 2016



Thank you!

ntop

\ meeting

Arnhem, Netherlands + October 17, 2016



